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Abstract

In recent years, approximation algorithms based on randomized rounding of fractional optimal solutions have been
applied to several classes of discrete optimization problems. In this paper, we describe a class of rounding methods that
exploits the structure and geometry of the underlying problem to round fractional solution to 0–1 solution. This is achieved
by introducing dependencies in the rounding process. We show that this technique can be used to establish the integrality
of several classical polyhedra (min cut, uncapacitated lot-sizing, Boolean optimization, k-median on cycle) and produces
an improved approximation bound for the min-k-sat problem. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The idea of using randomized rounding in the study of approximation algorithms was introduced by Ragha-
van and Thompson [17]. The generic randomized rounding technique can be described as follows:

• Formulate and solve a continuous relaxation (in polynomial time) for a 0–1 integer programming problem
to obtain an optimal (possibly fractional) solution �x.

• Devise a randomization scheme to decide whether to round each variable xi to 1 or 0.
The heart of the rounding procedure, given a relaxation, is in the design of the randomization scheme. In

a recent survey on combinatorial optimization Gr�otschel and Lov�asz [9] write:

... we can obtain a heuristic primal solution by �xing those variables that are integral in the optimum
solution of the linear relaxation, and rounding the remaining variables “appropriately”. It seems that this
natural and widely used scheme for a heuristic is not su�ciently analyzed ...
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Raghavan and Thompson [17] derive several approximation bounds for multi-commodity routing problems
by rounding independently each variable xi to 1 with probability �xi. Goemans and Williamson [7] introduce the
idea to round each variable xi independently but with probability f( �xi), for some particular nonlinear function
f(x). The algorithm (for the maximum-satis�ability problem) they obtain matches the best-known guarantee
for the problem (originally obtained by Yannakakis [20].) Bertsimas and Vohra [2] use a nonlinear rounding
function to obtain a randomized rounding heuristic for the set covering problem. Their method matches the
best-known guarantee (originally obtained by Chv�atal [4]). Br�onnimann and Goodrich [3] show further that
the set covering bound can be improved if the Vapnik–Cervonenkis (VC) dimension of the constraint matrix
can be suitably bounded. Randomized rounding can also be seen as a generalization of deterministic rounding
that exploits structural results of the fractional optimum solution to devise deterministic rounding heuristics.
This technique has been used in the analysis of the bin-packing problem (see for instance, [5]), machine
scheduling (see [19]) and set covering (see [11]).
In all the above applications of randomized rounding, each variable xi was rounded independently. Few

structural results of the fractional optimum solution have been used in the design of the rounding heuristics.
Goemans and Williamson [8], in their study of the maximum-cut problem, show that the geometry of the
fractional solution can be suitably utilized to obtain a rounding heuristic with very strong performance bounds.
In their rounding process, the variables xi are rounded in a dependent manner.
Our objective in the present paper is to describe a class of randomized rounding techniques that seems to

work well on several classes of problems that are variants of the min-cut type. For another application of this
technique see Bertsimas et al. [1]. The key advantage of this approach is that by using dependencies in the
rounding process, the analysis of the performance of the rounding heuristic becomes extremely simple.
In the next section, we use dependent randomized rounding to establish integrality results for several basic

combinatorial optimization problems. These include the min s − t cut, boolean optimization, uncapacitated
lotsizing and k-median problem on a cycle. In Section 3, we describe several approximation results using the
rounding technique. For the feasible-cut problem studied by Yu and Cheriyan [21], our technique obtains a
worst case bound of 2, matching that obtained in [21] (and independently by Ravi [18]). For the minimum
satis�ability problem studied by Kohli et al. [13], our technique gives a 2(1−1=2k) bound for the min k-SAT
problem. For the min-2-sat problem, this result improves the bound from 2 to 3

2 . Marathe and Ravi [15]
have obtained a bound of 2 independently using di�erent methods. They have also shown that the minimum
satis�ability problem is closely related to the node covering problem.
In this paper, we restrict the discussion only to new randomized rounding ideas and its applications. We

will not discuss, for instance, running time analysis or de-randomization techniques. Furthermore, for ease of
exposition, we let ZIP and ZLP denote the optimal integral and optimal fractional solution value, respectively.
ZH denotes the value returned by a heuristic H . All cost functions are assumed to be nonnegative. Graphs
are assumed to be undirected unless stated otherwise.

2. Dependent rounding and integrality proofs

In this section, we study the connection of dependent randomized rounding and some basic combinatorial
optimization problems. In particular, with the right randomization scheme, we show that the rounding argument
leads to direct integrality proofs of several well-known polyhedra.

2.1. s− t cut

In this section we give a direct probabilistic proof that the polyhedron de�ned by the min s− t cut problem
de�ned on the graph G = (V; E) is integral (originally established in [6]). The s − t mincut problem can be
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Fig. 1. Geometry of the randomization algorithm.

formulated as follows:

minimize
∑
(u;v)∈E

c(u; v)x(u; v)

subject to x(u; v)¿y(u)− y(v); (u; v) ∈ E;
x(u; v)¿y(v)− y(u); (u; v) ∈ E;
y(s) = 1; y(t) = 0;

y(u); x(u; v) ∈ {0; 1}:

Theorem 1. ZIP = ZLP:

Proof. Given a fractional optimal solution ( �x; �y) of the LP relaxation, we consider the following randomization
scheme:

• Generate a single random variable U uniformly distributed in [0; 1]. Round all nodes u with �y(u)¡U to
y(u) = 0, and all nodes u with �y(u)¿U to y(u) = 1 (cf. Fig. 1).

The process clearly produces a feasible cut.
Note that

E(ZH ) = E

(∑
e

cexe

)

=
∑

e=(u;v)∈E
ceP(min( �y(u); �y(v))6U6max( �y(u); �y(v)))

=
∑

e=(u;v)∈E
ce| �y(u)− �y(v)|

= ZLP:

Since ZLP6ZIP6E(ZH ) = ZLP, we obtain ZLP = ZIP and the relaxation is exact.

The same method also works for the directed s − t cut problem. Since the LP relaxation of the directed
s− t cut problem is the dual of the max-
ow problem, and since ZLP = ZIP for the directed case, we can use
this technique to obtain an easy probabilistic proof of the classical max-
ow–min-cut theorem. Furthermore,
since the randomization scheme does not violate precedence constraints of the type y(u)6y(v), we see that
adding this set of constraints to the formulation does not violate the integrality property.

Remark. Linial et al. [14] proved a more general result for the multi-commodity 
ow problem. As pointed
out by one referee, their technique, when restricted to the single-commodity case, gives rise to the same proof
presented in this paper.
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2.2. Boolean optimization

The quadratic optimization problem is to

minimize
∑
i; j

Qijxixj +
∑
i

cixi

subject to xi ∈ {0; 1}:
When the Qij are arbitrary, the problem is NP-hard. Several researchers have thus focused on identifying
properties of Qij that allow the quadratic optimization problem to be solved in polynomial time.
Sign-balanced graph: Construct a graph G that has an edge between i and j if and only if Qij 6=

0. The edges which correspond to positive (resp. negative) Qij are called positive edges (resp. negative
edges). G is called a sign-balance graph if it does not contain any cycle with an odd number of positive
edges.
The notion of sign-balancedness essentially ensures that the graph G can be decomposed into G1 ∪ G2,

where G1 ∩ G2 = ∅; G1⊂G;G2⊂G, and �(G1; G2) contains the set of positive edges. Hansen and Sime-
one [10] show that the sign-balanced graph problem (i.e., a restricted version of the quadratic optimiza-
tion problem where the coe�cients Qij give rise to a sign-balance graph) is solvable in polynomial time.
Note that this problem contains the maximum independent set problem on bipartite graphs as a special
case.
Consider the following LP formulation for the problem:

minimize
∑
i; j

Qijzij +
∑
i

cixi

subject to zij6xi; if Qij ¡ 0;

zij6xj; if Qij ¡ 0;

zij¿xi + xj − 1; if Qij ¿ 0;

zij ; xi¿0; ∀ i; j;
zij; xi61; ∀ i; j:

We show next that the integrality result of the above LP relaxation can be obtained in a direct manner.
We round the fractional solution as follows:

• Generate a single random number U uniformly in [0; 1].
• Starting from an optimal solution of the LP relaxation �x; �z, round xi to 1 if (i) i ∈ G1 and �xi¿U , or (ii)
i ∈ G2 and �xi¿1− U .

Theorem 2. ZLP = ZIP if G is sign-balanced.

Proof. Since 1− U is also uniformly distributed in [0; 1], P(xi = 1) = �xi. For i; j both in G1 or both in G2,
P(xixj = 1) = min{ �xi; �xj}: For i ∈ G1 and j ∈ G2,

P(xixj = 1) = P(U6 �xi; 1− U6 �xj) = max(0; �xi + �xj − 1):
At optimality, �zij =min( �xi; �xj) if Qij ¡ 0, and �zij =max(0; �xi + �xj − 1) if Qij ¿ 0. Then ZLP6ZIP6E(ZH ) =∑

i; j Q(i; j)E[xixj] +
∑

i cixi =
∑

i; j Q(i; j) �zij +
∑

i ci �xi = ZLP.
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2.3. Uncapacitated lot-sizing

Given a time horizon T , setup costs di (i=1; : : : ; T ) and production-inventory costs cij (indicating the cost
of producing a unit in period i to satisfy a unit of demand in period j), the goal of the uncapacitated lot-sizing
problem is to �nd a production schedule to minimize the total setup and production-inventory cost, and to
satisfy the demand (denoted by fi, i = 1; 2; : : : ; T ) at all time periods. We assume further that back-ordering
is not allowed in the model, and that production lead time is zero.
Let yi be a 0 − 1 decision variable that indicates whether we produce during period i. Let wi; j be the

fraction of the demand fj in period j that is met from production in period i6j. One formulation of the
uncapacitated lot-sizing problem (see [16]) is as follows:

minimize
∑
i; j

fjcijwi; j +
∑
i

diyi

subject to
j∑
k=1

wk; j = 1; ∀j;

wij6yi; ∀i; j;
yi ∈ {0; 1}; ∀i:

It is well known that the resulting LP is integral (see [16]) when ci; j¿cl; j for all i6l¡ j. This condition is
satis�ed, for instance, when the unit production cost is constant throughout all time periods. Here we prove
this result using randomized rounding.
For ease of exposition, we prove the result only for the case ci; j ¿ cl; l for all i¡ l¡j. The argument can

be adapted to prove the result for the general case.
In the optimal LP solution ( �w; �y), we must have

�wi; j6 �wi; k ; i6k ¡ j:

Otherwise, from the constraints
∑j

l=1 �wl; j = 1 and
∑k

l=1 �wl; k = 1, there exists some time period i
′ such that

�wi′ ; j ¡ �wi′ ; k whereas �wi; j ¿ �wi; k ; i; i′6j¡k:

If i′¿i, then transfering an � (�¿ 0) amount of 
ow from �wi; j to �wi′ ; j leads to feasible solution with smaller
cost (due to savings in inventory holding). Similarly, if i′¡i, then transfering an � amount of 
ow from
�wi′ ; k to �wi; k leads to a feasible solution with smaller cost. Hence, without loss of generality, we can augment
the LP relaxations with inequalities of the type

wi; j6wi; k if j¿k:

Let ZLP denote the value of this augmented LP relaxation.

Theorem 3. ZLP = ZIP.

Proof. Let ( �w; �y) be an optimal LP solution. Consider the following rounding method:

• Set r = 1:
• Set yr = 1. Generate a random number Ur uniformly in [0; �yr].
Let i be the index such that �wr; i¿U ¿ �wr; i+1. Set wr; l to 1, for all l= r; : : : ; i.

• Repeat step 2 with r ← i + 1 until r ¿T .
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We prove by induction that P(yi = 1) = �yi: Clearly P(y1 = 1) = �y1 = 1. Moreover,

P(yi = 1) =
∑
k¡i

P(yi = 1; yi−1 = 0; : : : ; yk+1 = 0; yk = 1)

=
∑
k¡i

P(yi = 1; yi−1 = 0; : : : ; yk+1 = 0|yk = 1) P(yk = 1)

=
∑
k¡i

P( �wk; i−1¿Uk ¿ �wk; i) �yk

=
∑
k¡i

( �wk; i−1 − �wk; i) = �wi; i = �yi:

In addition, P(wi; j =1)= P(wi; j =1; yi =1)= �wi; j. Hence the randomization scheme gives rise to an optimal
integral solution with cost ZLP, i.e., ZIP = ZLP.

2.4. k-median on cycle

Consider a cycle C = (V; E) with V = {v1; v2; : : : ; vn} and E = {(v1; v2); : : : ; (vn−1; vn); (vn; v1)}. Let c be a
nonnegative weight function on E. Suppose each node gives rise to a unit demand. The demand at vi can be
served by a facility located at vj (say j¿ i) at a cost proportional to the distance between the two nodes
de�ned as follows:

min{c(vi; vi+1) + · · ·+ c(vj−1; vj); c(vi; vi−1) + · · ·+ c(v2; v1) + c(v1; vn) + · · ·+ c(vj+1; vj)}:
The k-median problem is to locate k facilities at the nodes of the graph C in order to minimize the total cost
of serving all the demands. A natural LP relaxation is as follows:

(KMED) min
∑

i; j
ci; jxi; j

subject to
∑n

j=1
xi; j = 1; i ∈ {1; : : : ; n};

xi; j6yj; ∀i; j;∑
j
yj = k;

06yj61; ∀j:

Theorem 4. ZLP = ZIP.

Proof. Let ( �x; �y) be an optimal fractional solution to the LP relaxation. Consider the rounding heuristic:

• Cover the interval [0; k] with n nonoverlapping intervals, each of length yj; j = 1; : : : ; n, in that order.
• Generate U uniformly in [0; 1]. Set yj to 1 if one of the points in the set S = {U; 1 +U; : : : ; (k − 1) +U}
falls in the jth subinterval (of length yj). Let Ij denote the jth subinterval.

• Solve the assignment problem for the variables (xi; j) with yj �xed, by assigning the demand at i to the
nearest location with yj �xed at 1.

It is clear that E(yj) = yj. We consider the assignment problem for a �xed i. The neighbors of node i are
sorted in increasing distance from i. Without loss of generality, we assume that the order is i = i1; i2; : : : ; in.
A simple consequence of the geometry of the cycle C is that the union of the subintervals spanned by
Ii1 ; Ii2 ; : : : ; Iij is of the type⋃ j

l=1
Iil = [a; b] or [b; k] ∪ [0; a]:
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Note that the optimal solution x can be computed from y:

xi; ij =



min


yij ; 1−

∑
l:l¡j

yil


 if

∑
l:l¡j

yil ¡ 1;

0 otherwise:

On the other hand,

P(xi; ij = 1) = P(S ∩ Iij 6= ∅; S ∩ Iil = ∅ ∀l¡ j)

=



min


yij ; 1−

∑
l:l¡j

yil


 if

∑
l:l¡j

yil ¡ 1;

0 otherwise:

Hence E(xi; ij) = xi; ij .

3. Dependent rounding and approximation algorithms

In this section, we use the technique proposed in the previous section to obtain approximation results for two
classes of problems: the feasible cut and the min-k-sat problem. Our analysis shows that the LP relaxations
are within 2 times of the optimum for both problems. Hochbaum [12] has recently obtained an re�nement
of these results by showing that the LP relaxations are half-integral, and hence the 2-approximation results
follow immediately.

3.1. Feasible cut

The feasible cut problem on a graph G = (V; E) was introduced in Yu and Cheriyan [21]. Let M be a set
of pairs of nodes in G. The problem asks for a cut of minimum weight, which contains a designated vertex
s, but not any node pair (u; v) ∈ M . Yu and Cheriyan showed that the node covering problem can be reduced
to this problem. Furthermore, the reduction preserves the approximation bound. Hence, any 2-� approximation
algorithm for the feasible cut problem would imply the same improvement for the node covering problem.
Yu and Cheriyan (and independently Ravi [18]) proposed a 2-approximation algorithm for this problem. We
show next how to obtain a similar bound using the rounding idea of Section 2.1.
Consider the following formulation of the feasible cut problem.

minimize
∑
(u;v)∈E

c(u; v)x(u; v)

subject to x(u; v)¿y(u)− y(v); (u; v) ∈ E;
x(u; v)¿y(v)− y(u); (u; v) ∈ E;
y(u) + y(v)61; (u; v) ∈ M;
y(s) = 1;

y(u); x(u; v) ∈ {0; 1} :
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The randomized rounding algorithm is as follows:

• Starting with an optimal solution of the LP relaxation (x; y), position the nodes in [0; 1] according to the
value of y(u).
• Generate a single random variable U uniformly distributed in [ 12 ; 1]. Round all nodes u with y(u)¡U to
y(u) = 0, and all nodes u with y(u)¿U to y(u) = 1.

Since for (u; v) ∈ M at least one from y(u) and y(v) is larger than 1
2 , the rounding process produces a feasible

cut.

Theorem 5. ZIP6E(ZH )62ZLP.

Proof. If max(y(u); y(v))6 1
2 , then

E(x(u; v)) = 0:

If min(y(u); y(v))6 1
26max(y(u); y(v)), then

E(x(u; v)) = P(U ∈ [ 12 ;max(y(u); y(v))])
= 2(max(y(u); y(v)− 1

2 )62|y(u)− y(v)|:

If 1
26min(y(u); y(v)), then

E(x(u; v)) = 2|y(u)− y(v)|:
In all cases E(x(u; v))62|y(u)− y(v)|62x(u; v).

As before, the bound of 2 holds even in the presence of precedence constraints y(u)6y(v).

3.2. Minimum satis�ability

Kohli et al. [13] introduced the minimum satis�ability problem as an analog of the maximum satis�ability
problem. They proved that this version of the satis�ability problem remains NP-hard, even when each clause
contains at most two literals (min-2-sat).
Given a set of literals and clauses, let xi be a literal and Cj the jth clause. Let I+j be the set of unnegated

literals in clause Cj and I−j the set of negated literals in Cj. Each literal is assigned to be “true” or “false”.
The clause Cj is a satis�ed clause only if one of the literals in I+j is assigned to be “true” or if one of the
literals in I−j is assigned to be false. The min-sat problem is to �nd an assignment of the literals to minimize
a weighted sum of satis�ed clauses. In the rest of this section, we provide an improvement of their result in
the case when the number of literals in each clause is bounded. Let k denote an upper bound on the number
of literals in each clause.
The problem can be formulated as follows:

minimize
∑
j

wjzj

subject to zj¿xi; ∀i ∈ I+j ;
zj¿1− xi; ∀i ∈ I−j ;
xi; zj ∈ {0; 1} :
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We remark that we can assume, without loss of generality, that for every j the sets I+j and I
−
j are disjoint,

because if there is an i ∈ I+j ∩ I−j , then we will have
zj¿xi; zj¿1− xi:

These inequalities force zj = 1 in all feasible integer solutions, and hence, in a preprocessing step we can
identify all those clauses for which I+j ∩ I−j 6= ∅, set the corresponding variables zj equal to 1 and hence
reduce the problem to one for which I+j ∩ I−j = ∅.
We show that the following randomized rounding method achieves a bound of 2(1− 1=2k) for min-sat:

• Let x and z be an optimal LP solution. It is easy to see that

zj =max

[
max
i∈I+j

xi;max
i∈I−j

(1− xi)
]
:

• Split the xi’s into two sets A; B randomly, i.e., each xi is assigned to the set A (resp. B) with probability 1
2 .• Generate U in [0; 1] uniformly.

• For xi in A, set xi = 1 if xi ¿U , and 0 otherwise.
• For xi in B, set xi = 1 if xi ¿ 1− U , and 0 otherwise.

Theorem 6. E(ZH )62(1− 1=2k)ZLP.

Proof. Consider clause Cj with literals {xA1 ; : : : ; xAa } and {xB1 ; : : : ; xBb } in A and B, respectively.

P(zj = 1) = P

({
U6 max

xAi ∈I+j
xAi

}
∪
{
U¿ min

xAi ∈I−j
xAi

}
∪
{
1− U6 max

xBi ∈I+j
xBi

}
∪
{
1− U¿ min

xBi ∈I−j
xBi

})

6max

(
max
xAi ∈I+j

xAi ; 1− min
xBi ∈I−j

xBi

)
+ 1−min

(
min
xAi ∈I−j

xAi ; 1− max
xBi ∈I+j

xBi

)

= max

{
max
xAi ∈I+j

xAi + max
xAi ∈I−j

(1− xAi ); max
xAi ∈I+j

xAi + max
xBi ∈I+j

xBi ; max
xBi ∈I−j

(1− xBi ) + max
xAi ∈I−j

(1− xAi ) ;

max
xBi ∈I−j

(1− xBi ) + max
xBi ∈I+j

xBi

}

6 2zj:

Furthermore, with probability 1=2k , all elements in I+j are assigned to A and all in I−j are assigned to B,
in which case the last inequality reduces to zj. Symmetrically, with probability 1=2k , all elements in I−j are
assigned to A and all in I+j are assigned to B, in which case the last inequality reduces to zj. Hence,

E(ZH )6
(
2
(
1− 2

2k

)
+
2
2k

)
ZLP = 2

(
1− 1

2k

)
ZLP:

The above bound is tight, as can be seen from the following example. Consider a formula with k literals
x1; : : : ; xk . There are 2k combinations of clauses, since each literal can be negated or not. Clause j corresponds
to the set S of literals that are not negated. We will identify a clause by the set S of literals that appear
unnegated in it. All clauses have weight equal to 1. In this case the formulation becomes
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minimize
∑
S

zS

subject to zS¿xi; ∀i ∈ S; ∀S;
zS¿1− xi; ∀i 6∈ S; ∀S;
xi; zS ∈ {0; 1} :

The optimal solution of the linear programming relaxation has xi = 1
2 and therefore, ZLP = 2

k−1. We next
�nd the optimal solution to the integer programming problem. Consider an arbitrary integer solution. Let T be
such that xi = 1; i ∈ T and xi = 0; i 6∈ T . Then, all variables zS (S 6= T ) are forced to equal 1 except variable
zT . Since this is true for every T , we conclude that ZIP = 2k − 1. Therefore, for this example,

ZIP = 2
(
1− 1

2k

)
ZLP:
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